Development and Evaluation of a River-Basin-Scale High Spatio-Temporal Precipitation Data Set Using the WRF Model: A Case Study of the Heihe River Basin

نویسندگان

  • Xiaoduo Pan
  • Xin Li
  • Guodong Cheng
  • Hongyi Li
  • Xiaobo He
چکیده

To obtain long term accurate high resolution precipitation for the Heihe River Basin (HRB), Weather Research and Forecasting (WRF) model simulations were performed using two different initial boundary conditions, with nine microphysical processes for different analysis parameterization schemes. High spatial-temporal precipitation was simulated from 2000 to 2013 and a suitable set of initial, boundary, and micro parameters for the HRB was evaluated from the Heihe Watershed Allied Telemetry Experimental Research project and Chinese Meteorological Administration data at hourly, daily, monthly, and annual time scales using various statistical indicators. It was found that annual precipitation has gradually increased over the HRB since 2000. Precipitation mostly occurs in summer and is higher in monsoon-influenced areas. High elevations experience winter snowfall. Precipitation is higher in the eastern upstream area than in the western upstream, area; however, the converse occurs in winter. Precipitation gradually increases with elevation from 1000 m to 4000 m, and the maximum precipitation occurs at the height of 3500–4000 m, then the precipitation slowly decreases with elevation from 4000 m to the top over the Qilian Mountains. Precipitation is scare and has a high temporal variation in the OPEN ACCESS Remote Sens. 2015, 7 9231 downstream area. Results are systematically validated using the in situ observations in this region and it was found that precipitation simulated by the WRF model using suitable physical configuration agrees well with the observation over the HRB at hourly, daily, monthly and yearly scales, as well as at spatial pattern. We also conclude that the dynamic downscaling using the WRF model is capable of producing high-resolution and reliable precipitation over complex mountainous areas and extremely arid environments. The downscaled data can meet the requirement of river basin scale hydrological modeling and water balance analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)

     Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...

متن کامل

Comparison of Downscaled Precipitation Data over a Mountainous Watershed: A Case Study in the Heihe River Basin

Development of an accurate precipitation dataset is of primary importance for regional hydrological process studies and water resources management. Here, four regional precipitation products are evaluated for the Heihe River basin (HRB): 1) a spatially and temporally disaggregated Climate Prediction Center MergedAnalysis of Precipitation (CMAP) at 0.258 spatial resolution (DCMAP); 2) a fusion p...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin

Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve ...

متن کامل

Analysis of Streamflow Changes under Climate Change Using Rainfall-Runoff Model in the Kor River Basin

Abstract In this study, the predicted monthly temperature and rainfall data from HadCM3 model (base period, ۱۹۷۲-۲۰۰۱) and next period (۲۰۱۱-۲۰۴۰) under A2emission scenario were used to investigate the impacts of climate change on runoff variations in the Kor river basin. HadCM3 model output was downscaled based on a temporal downscaling approach (Change Factor) and spatial downscaling appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015